基于卷积神经网络的压力仪表OCR识别系统
OCR Recognition System for Pressure Instruments Based on Convolutional Neural Network
投稿时间:2025-02-14  修订日期:2025-03-11
HTML    查看/发表评论  下载PDF阅读器
中文摘要:
      压力仪表的传统人工抄表式设备现场计量,效率低、易出错且有安全风险,基于传感器、三维视觉的自动抄表技术存在局限,而基于光学字符识别的计量系统,借助计算机视觉和人工智能技术,因无需改造仪表硬件、成本低,成为复杂工业场景下高效准确的计量方案。利用基于OCR技术的设备现场计量系统,针对压力仪表现场计量场景研究了自动化数据采集、实时监控和数据分析的方法,分析了设备现场计量面临的挑战和OCR技术的优势,并基于上述结果改进了仪表定位、字符分割算法,设计了一套完整的可兼顾数据采集、处理、存储、分析等功能的计量系统架构。后续的实验结果有效地证明了该算法的有效性和可靠性,显示了该项技术对于提高设备现场计量效率和准确性的重大意义。
英文摘要:
The traditional manual meter reading for on-site measurement of pressure instruments is inefficient, error-prone, and poses safety risks. Automated meter- reading technologies based on sensors and 3D Vision have limitations. However, the OCR-based metering system, with the help of computer vision and artificial intelligence technologies, has become an efficient and accurate metering solution in complex industrial scenarios due to its advantages of no need for meter hardware modification and low cost. This study focuses on the application of OCR-based on-site metering techniques to pressure gauge scenarios, exploring methods for automated data collection, real-time monitoring, and data analysis. It examines the challenges faced by on-site equipment metering and the advantages of OCR technology. Building on these findings, the research improves upon gauge localization and character segmentation algorithms and designs a comprehensive metering system architecture that integrates data collection, processing, storage, and analysis functions. Subsequent experimental results effectively demonstrate the algorithm's efficacy and reliability, underscoring the significant potential of this technology to enhance the efficiency and accuracy of on-site equipment metering.
作者单位邮编
王晶星 航空工业北京长城计量测试技术研究所 力学声学研究部 100095
陈诗琳 航空工业北京长城计量测试技术研究所 力学声学研究部 
李一鸣 航空工业北京长城计量测试技术研究所 热学研究部 
王丽 航空工业北京长城计量测试技术研究所 力学声学研究部 
石伟 航空工业北京长城计量测试技术研究所 力学声学研究部 
刘芳 航空工业北京长城计量测试技术研究所 前沿技术研究部 
中文关键词:  OCR  设备现场计量  深度学习  仪表定位  字符分割
英文关键词:OCR  Equipment on-site metering  Deep learning  Instrument positioning  Character segmentation
基金项目:国家重点研发计划资助(2022YFB3207000)
DOI:
引用本文:
关闭