扫描隧道显微镜在原子级测量、表征与制造中的应用研究进展
DOI:
CSTR:
作者:
作者单位:

1.浙江大学 杭州国际科创中心;2.浙江大学 流体动力基础件与机电系统全国重点实验室

作者简介:

通讯作者:

中图分类号:

TB9

基金项目:

哈尔滨工业大学金属精密热加工国家级重点实验室项目(6142909240207)


Research progress on applications of scanning tunneling microscopy in atomic-scale measurement, characterization, and manufacturing
Author:
Affiliation:

1.ZJU-Hangzhou Global Scientific and Technological Innovation Center,Zhejiang University,Hangzhou;2.The State Key Lab of Fluid Power Transmission and Control,Zhejiang University,Hangzhou

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    扫描隧道显微镜(scanning tunneling microscope,STM)作为集原子级观测、表征与制造功能于一体的重要工具,可同时满足原子级制造中“看得到”、“测得准”和“造得出”三大核心需求。原子级制造旨在米空间尺度上实现对原子进行精确操控,其伴随的电子动力学过程在时间尺度可达到飞秒甚至阿秒量级。STM凭借其高时空分辨测量能力,成为揭示原子尺度下物理机制和量子效应的关键实验手段,显著推动了该领域从原理探索向应用实现的跨越。基于特有的量子隧穿效应,STM可对制备结构的电学、磁学等物性参数进行精确测量,建立制造参数与器件性能之间的定量构效关系,从而为工艺优化与质量评估提供依据。此外,STM还具备在原子尺度上进行精准操纵的能力,而其与高通量、自动化技术的深度融合,正成为推动STM原子级制造从实验室走向产业化应用的核心路径。本文介绍了STM在原子级测量、表征与制造领域的研究现状,总结了当前存在的挑战并对未来发展趋势提出了建议。

    Abstract:

    The scanning tunneling microscope (STM) is a pivotal instrument that integrates the capabilities of atomic-scale measurement, characterization, and fabrication. It simultaneously fulfills the three core requirements of atomic-scale manufacturing: "visualization," "precision measurement," and "fabrication feasibility." Atomic-scale manufacturing aims for precise manipulation at the spatial scale of meters, with associated electronic dynamics occurring on ultrafast timescales ranging from femtoseconds to attoseconds. With its high spatiotemporal resolution, STM serves as a key experimental technique for revealing physical mechanisms and quantum effects at the atomic scale, significantly advancing the field from fundamental exploration to practical application. Based on the unique quantum tunneling effect, STM performs precise measurements of physical properties (e.g., electronic and magnetic) in fabricated structures. This establishes quantitative structure-property relationships between fabrication parameters and device performance,thereby providing a critical basis for process optimization and quality assessment. Furthermore, STM possesses the inherent ability for precise atomic-scale manipulation. The deep integration of STM with high-throughput and automation technologies is emerging as a core pathway to transition STM-based atomic-scale manufacturing from laboratory proof-of-concept to industrial application. This review summarizes the current research progress in the application of STM for atomic-scale measurement, characterization, and manufacturing, outlines existing challenges, and provides perspectives on future development trends.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-11-07
  • 最后修改日期:2025-11-26
  • 录用日期:2025-12-04
  • 在线发布日期:
  • 出版日期:
文章二维码