基于数字微镜设备的全场谱域干涉技术与应用
DOI:
CSTR:
作者:
作者单位:

清华大学

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划(2024YFF0617801)


Full-field spectral-domain interferometry and its application based on digital micromirror device
Author:
Affiliation:

tsinghua university

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    谱域干涉被广泛应用于基站自由度测量、探针式光纤传感、生物组织成像等领域。为了解耦待求参量,通常需要获取光谱内的幅值响应,通过探测光谱周期性条纹频率,结合各光频处相位信息并进一步通过算法迭代,从而实现微纳尺寸测量。目前全场谱域干涉技术依赖波长或振镜扫描,数字微镜设备分辨率高、测量速度快且具备灵活的可编程特性,为解决谱域干涉难以单次探测全场信息的难题,本文提出了基于数字微镜设备的全场谱域干涉技术,利用空间光场编码和解码流程,实现全场光谱探测,分别应用于光谱干涉距离测量和光谱椭偏膜厚测量,展示了全场谱域干涉技术在微纳形貌检测中的应用。本文所提出的测量方法适用于稀疏表面的三维结构快速恢复和重建,测量过程无需波长或振镜扫描,提升了全场测量效率,可应用于抛光晶圆、硅绝缘片及键合界面的厚度与形貌表征。

    Abstract:

    Spectral-domain interferometry has been widely applied in base station degree-of-freedom measurement, probe-type fiber optic sensing, and biological tissue imaging. To decouple target parameters, it is typically necessary to acquire magnitude responses across the spectrum. By detecting periodic spectral fringe frequencies and combining phase information at each optical frequency, followed by algorithmic iteration, micro/nano-scale measurements can be achieved. However, current full-field spectral-domain interferometry relies on wavelength or galvanometer scanning, which limits its ability to capture full-field information in a single acquisition. Digital micromirror devices (DMDs) feature high resolution, fast measurement speed, and flexible programmability. To address this challenge, this paper proposes a full-field spectral-domain interferometry technique based on a digital micromirror device. By leveraging spatial light field encoding and decoding, the system enables full-field spectral detection, with applications in both spectral interferometric distance measurement and spectroscopic ellipsometry for thin-film thickness measurement, demonstrating its potential in micro/nano topography characterization. The proposed method is particularly suitable for rapid 3D structure recovery and reconstruction of sparse surfaces, eliminating the need for wavelength or galvanometer scanning and significantly improving full-field measurement efficiency. Potential applications include thickness and morphology characterization of polished wafers, silicon-on-insulator (SOI) substrates, and bonded interfaces.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-10-16
  • 最后修改日期:2025-11-25
  • 录用日期:2025-12-01
  • 在线发布日期:
  • 出版日期:
文章二维码