基于相对总变分模型的测风激光雷达二维风场反演
DOI:
CSTR:
作者:
作者单位:

1.南京信息工程大学大气物理学院;2.中国航空工业集团公司北京长城计量测试技术研究所

作者简介:

通讯作者:

中图分类号:

基金项目:

航空科学基金;国家自然科学基金青年项目;江苏省自然科学青年基金项目


Two-dimensional wind retrieval for wind lidar based on relative total variation model
Author:
Affiliation:

1.School of Atmospheric Physics,Nanjing University of Information Science &2.Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    测风激光雷达只能直接测量风矢量在径向的分量,因此二维风场的反演对研究风场结构具有重要意义。为解决传统VAP(Velocity Azimuth Processing)算法在二维风场反演中存在的风速失真问题,引入相对总变分模型对其进行改进。基于风速失真与径向风速的相关性,构建阈值判据识别失真区域并对该区域进行修正;采用相对总变分模型消除修正过程中引入的不规则纹理,并提取出二维风场的全局结构分量;进一步结合真实径向风速的纹理信息,恢复二维风场局部纹理特征。结果表明,改进后的算法能够有效地修正VAP算法存在的风速失真问题。与VAP算法初步反演结果相比,结合相对总变分模型的VAP算法的风速反演结果均方根误差降低了0.42 m/s,风向反演结果均方根误差降低了4.85,有效提高了风场反演结果的准确性。

    Abstract:

    Wind lidar can only directly measure the radial components of wind vectors. So two-dimensional(2D)wind retrieval is crucial for reconstructing wind structure. To address the issue of wind-speed distortion in the 2D wind retrieval using traditional Velocity Azimuth Processing(VAP)algorithm, the relative total variation(RTV)model is incorporated to improve the algorithm. Based on the correlation between wind-speed distortion and radial wind speed, a threshold is established to identify distorted regions ,enabling subsequent correction. Then the RTV model is employed to eliminate irregular textures generated during the correction process and extract the 2D overall wind structure . And local texture features are reconstructed by the texture information from the actual radial wind speed. Experimental results demonstrate that the improved algorithm effectively mitigates the wind-speed distortion issue in VAP algorithm. Compared to the preliminary results retrieved by VAP algorithm, the improved algorithm reduces root mean square error by 0.42 m/s for wind speed and 4.85 for wind direction, significantly improving the accuracy of wind retrieval.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-09-23
  • 最后修改日期:2025-12-10
  • 录用日期:2025-12-19
  • 在线发布日期:
  • 出版日期:
文章二维码