基于无人机与卫星遥感的多源DEM生成与融合方法研究
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Research on multi-source DEM generation and fusion method based on unmanned aerial vehicle and satellite remote sensing
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提升复杂地貌区域数字高程模型(Digital Elevation Model, DEM)的构建质量与生产效率,提出一种融合高分辨力光学影像与合成孔径雷达(Synthetic Aperture Radar, SAR)干涉影像的多源DEM获取与融合方法。以无人机和卫星遥感系统为平台,构建多视角数据获取链路,分别生成光学影像DEM与干涉影像SAR-DEM,并引入基于纹理与结构特征的点云分类算法以及区域自适应权重估计模型,实现对多源高程数据的加权融合。融合过程中采用误差约束与接边控制策略,解决了地貌遮挡、数据空洞及高程跳变等典型难题。在森林、冰川、沙漠、城市和水体等典型地貌区域开展实验,结果表明:该方法具备高程恢复精度高和边界连续性好的特点,能够满足多种地貌类型的三维建模需求,其中丘陵地区的相对高程中误差仅为0.5 m。该研究成果为高分辨力地形测图、地貌演化监测及灾害预警等领域提供了稳定可靠的技术支撑,对推动遥感测绘的自动化与智能化具有重要意义。

    Abstract:

    To improve the quality and efficiency of Digital Elevation Model (DEM) construction in complex terrain, this study proposes a multi-source DEM acquisition and fusion method that integrates high-resolution optical imagery and interferometric Synthetic Aperture Radar (SAR) imagery. Using an unmanned aerial vehicle and satellite remote sensing system as a platform, this method constructs a multi-view data acquisition chain to generate optical imagery DEM and interferometric imagery SAR-DEM, respectively. By introducing a point cloud classification algorithm based on texture and structural features and a regional adaptive weight estimation model, weighted fusion of multi-source elevation data has been achieved. The fusion process employs error constraints and seamline control strategies to address typical challenges such as terrain occlusion, data holes, and elevation jumps. Experiments in representative landforms, including forests, glaciers, deserts, cities, and water bodies, demonstrates that this method has the characteristics of high elevation restoration accuracy and good boundary continuity, and can meet the three dimensions modeling needs of various landform types. Among them, the relative elevation mean error in hilly areas is 0.5 m. The research findings provide stable and reliable technical support for fields such as high-resolution topographic mapping, landform evolution monitoring, and disaster early warning, and are of great significance for promoting the automation and intelligence of remote sensing mapping.

    参考文献
    相似文献
    引证文献
引用本文

王丝雨, 崔育国, 魏春风, 陈骥驰.基于无人机与卫星遥感的多源DEM生成与融合方法研究[J].计测技术,2025,(6):105~115:
10.11823/j. issn.1674-5795.2025.06.09.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-05
  • 出版日期:
文章二维码