基于深度学习的多通道MOS环境气体检测系统
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Deep learning-based multi-channel MOS environmental gas detection system
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对复杂环境下多组分气体的检测需求,设计并实现了一种基于金属氧化物半导体的便携式多通道气体检测系统。系统集成8路传感器阵列、高精度信号采集链路及低功耗硬件,并结合多分支卷积神经网络与双向长短期记忆网络实现多通道信号的自动特征提取与时序建模。以CO、C2H5OH及其干扰和混合气体为研究对象开展实验,结果表明:系统对被检测物的不同浓度区间均表现出良好的线性响应与高检测精度。对比实验进一步验证了多传感器融合策略在提升识别准确率、增强鲁棒性及适应复杂环境方面的有效性,其中混合气体识别准确率最高达100%。本研究为环境监测、工业安全及公共健康领域的多组分气体检测提供了可靠的技术支撑与实践依据。

    Abstract:

    To address the need for multi-component gas detection in complex environments, this paper presents the design and implementation of a portable multi-channel gas detection system based on metal-oxide semiconductor (MOS) sensors. The system integrates an eight-channel sensor array, a high-precision signal-acquisition circuit, and a low-power hardware. A multi-branch convolutional neural network combined with a bidirectional long short-term memory network is employed to achieve automatic feature extraction and temporal modeling of multi-channel signals. Experiments using CO, C2H5OH, and their interfering gases and mixtures as the research subjects demonstrate that the system exhibits linear responses and high detection accuracy across different ranges of concentration. Comparative tests validate that the sensor-fusion strategy improves classification accuracy, enhances robustness, and increases adaptability to complex environments, with the classification accuracy for mixed gases reaching up to 100%. This study provides a reliable technical basis and practical reference for multi-component gas detection in environmental monitoring, industrial safety, and public health applications.

    参考文献
    相似文献
    引证文献
引用本文

张辰洋, 刘广顺, 马鹏飞, 陈寅生.基于深度学习的多通道MOS环境气体检测系统[J].计测技术,2025,45(5):97~107:
10.11823/j. issn.1674-5795.2025.05.10.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-10
  • 出版日期:
文章二维码