基于红外辐射的发动机涡轮叶片温度测量方法综述
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Overview of temperature measurement methods for engine turbine blades based on infrared radiation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    介绍了辐射测温技术的基本原理以及研究中的关键问题。归纳了基于红外辐射的发动机涡轮叶片温度测量方法的国内外应用现状,对测量时产生的误差进行了分析,并提出降低误差的措施。指出在环境辐射方面,需要充分考虑燃烧气体和环境表面辐射的影响,建立准确的反射模型,融合算法,矫正辐射干扰误差;在发射率模型方面,应根据具体情况预先建立发射率模型和无发射率模型,结合机器学习等算法提高测量精准度;在光学系统设计方面,需选择合适的光学材料和涂层,增强系统在不同环境下的灵敏度;在数据处理方面,可利用神经网络、遗传算法、约束优化等方法,最大程度减小误差,提高计算精度。

    Abstract:

    This paper introduces the basic principles of radiation temperature measurement technology and key issues in research. The current application status of temperature measurement methods for engine turbine blades based on infrared radiation at home and abroad is summarized, the errors generated during measurement are analyzed, and the measures to reduce errors are proposed. It is pointed out that in terms of environmental radiation, it is necessary to fully consider the influence of combustion gases and environmental surface radiation, establish accurate reflection models, integrate algorithms, and correct radiation interference errors; In terms of emissivity modelling, emissivity model and non?emissivity model should be established in advance according to specific situations, and machine learning algorithms should be combined to improve measurement accuracy; In terms of optical system design, it is necessary to select appropriate optical materials and coatings to enhance the sensitivity of the system in different environments; In terms of data processing, methods such as neural networks, genetic algorithms, and constraint optimization can be used to minimize errors and improve computational accuracy to the greatest extent possible.

    参考文献
    相似文献
    引证文献
引用本文

高山, 熊新梦, 刘海龙.基于红外辐射的发动机涡轮叶片温度测量方法综述[J].计测技术,2024,(4)::
10.11823/j. issn.1674-5795.2024.04.01.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-09
  • 出版日期:
文章二维码