时速350公里及以上高铁牵引和制动系统压力传感器芯片制造及优化
Pressure sensor chip manufacturing and optimization for traction and braking systems in high-speed railways with speeds of 350 km/h and Above
投稿时间:2025-04-01  修订日期:2025-05-10
HTML    查看/发表评论  下载PDF阅读器
中文摘要:
      针对高铁牵引与制动系统中复杂工况对压力传感器高精度、宽动态范围及快速响应的严苛要求,本研究基于压阻效应机理,开展了高精度压力传感器芯片的制造与优化技术攻关。通过建立多物理场耦合的结构参数优化模型,系统研究了敏感膜片厚度、压敏电阻布局与掺杂浓度对传感器性能的协同影响机制,提出基于参数化设计方法的膜片刚度-灵敏度协同优化策略。创新性 开发了八层掩膜板光刻工艺与KOH/IPA复合湿法蚀刻技术,实现悬膜厚度亚微米级控制精度。研究结果表明,优化后传感器灵敏度达56.987mV/kPa,非线性误差0.048%FS,在300%过载工况下仍保持结构完整性。该成果突破了高精度压力芯片制造技术瓶颈,实现了牵引系统专用传感器的自主可控,为保障高铁列车安全运行与核心部件国产化替代提供了关键技术支撑。
英文摘要:
To meet the stringent requirements for high precision, wide dynamic range, and rapid response under complex operating conditions in high-speed railway traction and braking systems, this study presents the design, fabrication, and multiphysics optimization of a high-performance piezoresistive pressure sensor chip. A comprehensive structural optimization framework was established by coupling solid mechanics, thermoelectric, and carrier transport physics, enabling a systematic investigation into the coupled influence of membrane thickness, piezoresistor placement, and doping concentration on device sensitivity, linearity, and mechanical robustness. A stiffness-to-sensitivity co-optimization strategy was proposed based on a parametric design methodology. Furthermore, a customized eight-mask photolithography process and KOH/IPA hybrid anisotropic wet etching technique were developed, achieving submicron-level precision in suspended diaphragm thickness control. Finite element simulation results demonstrate a sensitivity of 56.987?mV/kPa, a nonlinearity of 0.048% FS, and structural stability under 300% overpressure. This work addresses a key technological bottleneck in high-accuracy MEMS pressure sensor fabrication and lays the foundation for fully localized production of safety-critical sensing components in next-generation traction systems for high-speed rail.
作者单位邮编
郑德智 北京理工大学 前沿交叉科学院 100081
董晓源 北京理工大学 前沿交叉科学院 
陈傲北 北京航空航天大学 仪器科学与光电工程学院 
孙颖 北京航空航天大学 仪器科学与光电工程学院 
胡纯 北京理工大学 前沿交叉科学院 
王帅 北京航空航天大学 计算机学院 100191
中文关键词:  压力传感器  压阻效应  参数化模型  多物理场耦合仿真
英文关键词:pressure Sensor  piezoresistive effect  parameterized model  multiphysics coupled simulation
基金项目:国家重点基础研究发展计划(973计划)
DOI:
引用本文:
关闭