基于PSO-BP的石英挠性加速度计静态模型辨识
Identification of accelerometer static model based on PSO-BP during long voyage
投稿时间:2025-03-03  修订日期:2025-04-13
HTML    查看/发表评论  下载PDF阅读器
中文摘要:
      远程长航时飞行器要求其导航系统具有高精度、高可靠性、自主性,对石英挠性加速度计的性能提出了更高要求。静态误差模型的标定直接关系到加速度计的零偏稳定性、比例因子精度和非线性度等性能表现。本文从加速度计误差模型标定方法入手,针对最小二乘法无法拟合复杂非线性关系,以及BP(Back Propagation)神经网络辨识加速度计静态模型易陷入局部最优的问题,采用粒子群优化BP神经网络(PSO-BP)算法弥补二者的缺陷。在精密离心机上开展石英加速度计的标定实验后得到加速度计输入和输出的数据集,并分别采用最小二乘法、BP神经网络和PSO-BP神经网络拟合加速度计输出,得到各方法的测试集预测结果和均方误差。结果表明,PSO-BP可以有效辨识加速度计静态模型,其均方误差的最优水平相对BP网络的辨识结果降低了两个数量级,预测误差曲线更加平稳,波动幅度更小。
英文摘要:
      The navigation systems of long-endurance remote aerial vehicles require high precision, reliability, autonomy, and endurance, thus placing stringent demands on the performance of quartz flexure accelerometers. Calibrating the static error model is directly linked to key performance indicators of the accelerometer, such as zero-bias stability, scale factor accuracy, and nonlinearity. This study examines calibration methods for accelerometer error models, addressing the limitations of the least squares method in fitting complex nonlinear relationships and the tendency of BP (Back Propagation) neural networks to become trapped in local optima when identifying the static model of quartz flexure accelerometers. To overcome these issues, a Particle Swarm Optimization BP (PSO-BP) algorithm is employed to integrate the advantages of both approaches. After calibration experiments on a precision centrifuge, a dataset of accelerometer inputs and outputs was obtained. The least squares method, BP neural network, and PSO-BP neural network were then applied to fit the accelerometer output, and the prediction results and mean square errors for each method’s test set were evaluated. Experimental results demonstrate that the PSO-BP algorithm effectively calibrates the static model of the accelerometer, achieving a reduction in mean square error by two orders of magnitude compared to BP network results, a smoother prediction error curve with smaller fluctuation amplitude.
作者单位邮编
史有志 北京航空航天大学 100191
冯仁剑 北京航空航天大学 
李晓婷 航空工业北京长城计量测试技术研究所 
中文关键词:  石英挠性加速度计  静态模型辨识  PSO-BP网络  均方误差
英文关键词:quartz flexure accelerometer  static model identification  PSO-BP network  mean square error
基金项目:国家“十四五”技术基础科研项目(JSJL2022205A002)
DOI:
关闭