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Design and verification of miniaturized space’s optical payloads for

batch production
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Abstract: To address the bottlenecks of high cost and long development cycles in traditional aerospace product
manufacturing, and to meet the urgent demand for batch production of space optical payloads in giant satellite constella-
tions, this study adopts an integrated approach combining modular structural design, process optimization, and automated
testing technology to develop a Maksutov-Cassegrain optical system with a small F-number and minute pixels. By enab-
ling interchangeable assembly of lenses and focal plane components, along with integration into an automated assembly
and testing line, the system achieves a ground pixel resolution of 4.5 m and a swath width of 13.5 km X 13.5 km at an or-
bital altitude of 500 km, with a total weight of only 1.1 kg. This approach has improved the overall development efficiency
by 50%. The results provide crucial technical support for the low - cost, rapid, and batch - producible manufacturing of
miniaturized space optical payloads.

Key words: space remote sensing technology; space optical payload; modular design; swath width; mass production;

development efficiency; automated final assembly and testing

W B 2025-10-30; fEEBM: 2025-11-15
BEEWHE: HHERHURITHI H (202302010236GX)
SIRA: BE, A2, BRGNS, & . s RN S D R BT SRR [ ] TR,
2025, 45(6) :41-49.
Citation: CHENG X, CONG S S, XUE Z P, et al. Design and verification of miniaturized space’s optical pay-
loads for batch production[J]. Metrology & Measurement Technology , 2025, 45(6) :41-49.




- 42 - BENEFHEAR

20255 % 45 % % 6

0 35l

VAR, Bl 25 ) R R Y R R
W R P24, DolfE . @ik, SRR
MY E R TR R s R RN T s R R . A5 )
FHRE T 28 J D B TR ) “ SRR AL /N LA
FOE R . M ST, /o8 TR IR " H =S
(] D' 2 AT o A5 e T I A AR AR 1 7
fege e wiAk . AR A 8 B R A HE LA
ey I DO ST S e B T =R ST N (1953
AFRE R YT K

R AR AR 2 [ 4 HAT 40 B
RS RIR R, HZ R TR . A R
AR R, LS A P A e A E
ZF, e O TR P AR AR RN LA
X, BRI R S OL 3, O 2 iUl 42 18 IR B
8] 73 3% 0 1 B B e Uy 1) o B/ AL S TR AR AILARE
RN BB SR TR A6 AT, R N
SV Y H BT 55 . PR, SEE /N A DDA
2o A e, S R &P Rk
A T 1) R 2 TR] R R A Y 2 SR e B A O
PRk -

TEG 7 2 far /N AL FOR U, B N AT S
TR T ZH TAE, INFAE Nt ay i/
Tl 4= R A AR AL R FH RO+ M2 1) 6 2 235 ¥ i 4
mA R — R, BHLE 2 kg, 7500 km
T FAT SO 3,48 m M IR T A3 BE T, AR R T
15 km x 15 kmo £ 4 AP H—Fh 2 [MAEHLGAL
gityicit, FRBBARGEE I 118 mm, FAL
6.5, ML BT H A 1. 52 kg, SEI TOGHLES
MRS SR el . 58 EAT B 5L = B Y
“DOVE” Z& 51 {3 TR 2R F B 5 7R 46 e - ZEAR AR
JeF RS, FE 1100 J7 4% K A L far #5281
(Charge-Coupled Device, CCD), AJSZHL3 ~ 5 m il
WM, TRHUES kg, HRTTERL200 W,
SR, A WS 2 R AR T RN 2 AT 1 P RE
ekt , XA A S AR A K

AR SC LA T ] 4 77 A A A5l 2 e Jak TR Y
AT RS R ER S, Bt T — T B eI
FER R ZERE RO 2% 22 58 19 S/ B 25 [R]DIG 22 2 ey

il

R TR . DR TR A Bk
NE W SR 5 5 N L R 01 B S £ W AL 7oA
50%, “h=s )T B A Az P PR AL T A A
AT
1 RUNBT 2 H A ST

T/ INRI S [B] G2 2 far 2R /N B B s e R
REMMOLERG, WK IR . iZ0G2R 3 45
M FEALHE R AAE . A A L (PO B IR R
RS © REIEBE AL . A5 A AR A G B A
BRSO R R

The front-end lens group

= =
I Detector component

: \
Glare shield The correction mirror

BT =S DG B i A s 1

Fig.1  Overall micro space optical payloads structure

TEICH R GBI R, XS He a3 i 1 A=t
e e A3 MIE A E DR RG . it
RGO E pORHR A, X LA IV 9 I B B Y 4
IR 28, HREFF RSN 900
TR IE RE . DLEs i = R A R R 2 R 0k
FRGBRVERMN R, HRERTMERKK,
IS . R PR RO RGN
HARKERTHRES RS SRanis.

EEE LR ER, e Ve R Bl B AL
IEBEES M (PR 20 DL RE BT TR . RER
2 A BERAE AT A, AR E R 22 T4 5
TG o N HE— B RRAR N T FURA, RGE
R HIA BRI 254, bk AR BRI TR . A
e LG SR ARG 45 ) 2

65 RGBT S5 N OGS H N 18] 2 i
K 2(a) Wt RERSIIE, Jer REH 5 .
YRR SIS B 5 AN B A O Ae AR 37545 1
ZiERS); K 2(b) R, 2R ARAL 111y
& i 4% 35 R %% (Modulation Transfer Function, MTF)
40.22@156 1p / mm; & 2(c)FH, MR



iR

BENEHRER - 43 -

Y1 77 8 (Root Mean Square, RMS) 2 12 {5 A 48 5

3.2 wm, /MNTFIEBERE; K 2(d) ARt

SRR, YRR A 0. 02%.,
MEANIR, HFRFEAERE 3.2 pm RITR

Lenses

Secondary mirror Primary mirror
(@) ¥ RG

(a) Form of optical system

Object plane: 0.000 0° Object plane: 0.700 0° g 0 45

| ©
Object plane:1.100 0°

Image plane: —1.100 0°
Image plane: 6.912 mm

.

Image plane: —6.912 mm

20.00
sgogg
(=]

2

Image plane: 0.000 mm Image plane: 4.398 mm

Image plane: -0.700 0°

Image plane: -4.398 mm

(0) W6 R G HFIE

(c) Point diagram of optical system

& 2

B-0.450 0-T-F [ 2+ 0.450 0-5 5K
8- 0.550 0-5 K[ 8= 0.600 0-- 171

SHTH 4 CMOS #£ 00 25 19 55 ff -, 78 500 km $LiA =
JE AT S 4.5 m Y ML TEAR 0T 43 B 0 A 1305 km %
13.5 km (YRR IRTE, R FECh 6.5, IR
360 mm. MR @2.2°,

F =99.61, M, =09948

0.8 F
0.6
0.4 F
02F
0.0 L L L L 1
0 31.2 62.4 93.6 124.8 156
Spatial frequency: period / mm
(b) J6 RGP HIMTE
(b) MTF of optical system
1.1 1.1
1.0 1.0
>
o
S5
+
0 0
-0.5 0 0.5 -0.05 0 0.05

Field curvature / mm Distortion / %

2-0.4500 8-0.5500
2-0.6500 B-0.700 0
2-0.

0.650 0- -1 @ 0.650 0-5RI [ 6000 =-0.5000

+0.700 0-3 K B 0.500 0-T-2F-)

0.550 0- 77 H @~ 0.700 0-T-F 1

+0.600 0-3HI = 0.500 0-J12% (1)

(d) Ve R G ih 5w

(d) Field curvature and distortion of optical system

e RGBT AR

Fig.2  Design results of optical system
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Tab.1  Design results of optical system
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Tab.2  Test results of centering adjustment accuracy

Surface number Surface tilt/(”)

1 12.516
2 15.658
3 4.433
4 3.520
5 7.268
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Tab.3  Test results of optical payload wavefront

aberration
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Fig.7 Test results of optical payload wavefront aberration
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Fig.11  On-orbit imaging results
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