基于无人机与卫星遥感的多源DEM生成与融合方法研究
DOI:
CSTR:
作者:
作者单位:

1.沈阳市勘察测绘研究院有限公司;2.沈阳工业大学 机械工程学院

作者简介:

通讯作者:

中图分类号:

TB9

基金项目:

中国博士后科学基金面上资助项目(2021M692228);辽宁省科技计划联合计划技术攻关计划项目(2024JH2/102600218)


Research on multi-source DEM generation and fusion method based on unmanned aerial vehicle and satellite remote sensing
Author:
Affiliation:

1.Shenyang Geotechnical Investigation Surveying Research Institute Co,Ltd,Shenyang;2.School of Mechanical Engineering,Shenyang University of Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提升复杂地貌区域数字高程模型(Digital Elevation Model, DEM)的构建质量与生产效率,提出一种融合高分辨率光学影像与合成孔径雷达(Synthetic Aperture Radar, SAR)干涉影像的多源DEM获取与融合方法。以无人机和卫星遥感系统为平台,构建多视角数据获取链路,分别生成光学影像DEM与干涉SAR-DEM,并引入基于纹理与结构特征的点云分类算法以及区域自适应权重估计模型,实现对多源高程数据的加权融合。融合过程中采用误差约束与接边控制策略,解决了地貌遮挡、数据空洞及高程跳变等典型难题。在森林、冰川、沙漠、城市和水体等典型地貌区域开展实验验证,结果表明该方法具备良好的高程恢复精度和边界连续性,能够适应多种地貌类型的三维建模需求。研究成果为高分辨率地形测图、地貌演化监测及灾害预警等应用提供了稳定可靠的技术支撑,对提升遥感测绘的自动化与智能化水平具有重要意义。

    Abstract:

    To improve the quality and efficiency of digital elevation model (DEM) construction in complex terrain, this study proposes a multi-source DEM acquisition and fusion method that integrates high-resolution optical imagery and interferometric synthetic aperture radar (SAR) imagery. Using an unmanned aerial vehicle and satellite remote sensing system as a platform, this method constructs a multi-view data acquisition chain to generate optical imagery DEM and interferometric SAR-DEM, respectively. By introducing a point cloud classification algorithm based on texture and structural features and a regional adaptive weight estimation model, achieving weighted fusion of multi-source elevation data. The fusion process employs error constraints and edge control strategies to address typical challenges such as terrain occlusion, data holes, and elevation jumps. Experimental validation in representative landforms, including forests, glaciers, deserts, cities, and water bodies, demonstrates that this method achieves excellent elevation recovery accuracy and boundary continuity, adapting to the three dimensions modeling needs of various landform types. This research provides stable and reliable technical support for applications such as high-resolution terrain mapping, landform evolution monitoring, and disaster early warning, and is of great significance for advancing the automation and intelligence of remote sensing mapping.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-08-07
  • 最后修改日期:2025-09-05
  • 录用日期:2025-09-23
  • 在线发布日期:
  • 出版日期:
文章二维码